Molecular dynamics study of small PNA molecules in lipid-water system.

نویسندگان

  • Pawel Weronski
  • Yi Jiang
  • Steen Rasmussen
چکیده

We present the results of molecular dynamics simulations of small peptide nucleic acid (PNA) molecules, synthetic analogs of DNA, at a lipid bilayer in water. At neutral pH, without any salt, and in the NP(n)gammaT ensemble, two similar PNA molecules (6-mers) with the same nucleic base sequence and different terminal groups are investigated at the interface between water and a 1-palmitoyl-2-oleoylphosphatidylcholine lipid bilayer. The results of our simulations suggest that at low ionic strength of the solution, both PNA molecules adsorb at the lipid-water interface. In the case where the PNA molecule has charged terminal groups, the main driving force of adsorption is the electrostatic attraction between the charged groups of PNA and the lipid heads. The main driving force of adsorption of the PNA molecule with neutral terminal groups is the hydrophobic interaction of the nonpolar groups. Our simulations suggest that the system free energy change associated with PNA adsorption at the lipid-water interface is on the order of several tens of kT per PNA molecule in both cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Molecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug

Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 92 9  شماره 

صفحات  -

تاریخ انتشار 2007